

Feb 19-8:47 AM

Consider a geometric Prob. dist with $P=.4$ Let x be \# number when first success happens, find

1) $P(x=4)=$ geomet pdf (.4,4) $=.086$
2) $P(x<4)=P(x \leq 3)=$ geometcd $f(.4,3)=. .784$

$$
\text { 3) } P(x>4)=P(x \geq 5)=1-P(x \leq 4)
$$

$\begin{aligned} 45 & =1-\operatorname{geomet} \operatorname{df}(.4,4)\end{aligned}$
.130

$$
\begin{aligned}
& \text { 4) } \begin{aligned}
& \\
&=1-p=1.6 \quad \text { 5) } \mu=\frac{1}{p}=\frac{1}{.4}=2.5 \\
& \text { 6) } \sigma^{2}=\frac{q}{p^{2}}=\frac{.6}{.4^{2}}=3.75 \text { 7) } \sigma=\sqrt{\sigma^{2}}=\sqrt{3.75} \approx 1.936 \\
& \mu \approx 3 \\
& \sigma \approx 2 \rightarrow 68 \% \text { Range } \mu \pm \sigma=3 \pm 2 \\
& \Rightarrow 1 t_{0} 5
\end{aligned}
\end{aligned}
$$

Oct 31-6:24 PM
use Uniform Prob. dist. For all values from

$$
\begin{aligned}
& \begin{array}{l}
4 \text { to } 44 . \\
P(x>10) \\
=(44-10) \cdot \frac{1}{40}=\frac{34}{40}=\left(\frac{4}{20}\right)=\sqrt{85}
\end{array}+\frac{10}{40}
\end{aligned}
$$

find x that separates the top 101 . From the rest.

$$
(x-4) \cdot \frac{1}{40}=.9
$$

$$
\begin{array}{ll}
x-4=40(.9) & x-4=36 \\
x=40
\end{array}
$$

Consider a Poisson Prob. dist with mean of
10 in a fixed interval.
Let x be \# of successes in that interval.

1) $P(x \leq 12)=$ Poissoncd $f(10,12)=.792$
2) $P(x \geq 8)=1-P(x \leq 7)=1-\operatorname{Poissonclf}(10,7)$
$=.780$
3) $P(x=8$ or $x=12)=$
Poisson Pdf $(10,8)+$ Poisson Ply $(10,12)=.207$
4) $\sigma^{2}=\mu=10 \quad$ 5) $\sigma=\sqrt{\sigma^{2}}=\sqrt{10} \approx 3$
$\begin{aligned} & \text { Usual Range } \mu \pm 2 \sigma=10 \pm 2(3)=P 4 \text { to } 16 \\ & \text { "95\%/Range" }\end{aligned}$
find $P(z<-1.5$ or $z>1)$

\qquad
\qquad
find K Such that $P(Z>K)=.01$
$K=\operatorname{inuNorm}(.99,0,1)$

$K=$ inuNorm $(01,0,1)$

Oct 31-6:37 PM

clear all lists.

Store $2,4,6$, and 8 in L1.
use 1-var stats with LI to find
$\mu=\bar{x}=5 \quad \sigma_{0}=\sigma_{x}=2.236 \quad \sigma^{2}=5$
Let's take all Samples of Size ? with replacement from our list.
$\begin{array}{llll}2,2 & 2,4 & 2,6 & 2,8\end{array}$
$\begin{array}{llll}4,2 & 4,4 & 4,6 & 4,8\end{array}$
$\begin{array}{llll}6,2 & 6,4 & 6,6 & 6,8\end{array}$
$\begin{array}{llll}8,2 & 8,4 & 8,6 & 8,8\end{array}$
Now find \bar{x} for each Sample

Oct 31-6:49 PM

Oct 31-7:03 PM

Oct 31-7:19 PM

Ages of students are normally dist. with $\mu=32$ and $\sigma=6$.
If we randomly select $4 \quad n=4$
find the prob. that their mean age is
between 30 and 35 .
$P(30<\bar{x}<35)$
$=$ normalcdf $(30,35,32,3)$
CIT $\left\{\begin{array}{l}\mu_{\bar{x}}=\mu=32 \\ \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\end{array}\right.$
$=.589$
\qquad
find $\bar{x}=Q_{3}$ for randomly Selected groups of

